Section 4.1: The Early Scientist

4.1.1 Alessandro Volta

Aleinum, or the discovery of electrochemistry, is attributed to the University of Pisa. In Pisa in 1780, the professor Alessandro Volta, a native of Cremona, prepared an instrument to demonstrate the action of an electric current, was discovered by the English chemists Carlisle and William Nicholson in 1800. They found that if two different metals were placed in contact and immersed in a solution of a salt, a current would flow from one metal to the other. This was the first example of an electrochemical cell, and it was the forerunner of modern batteries.

4.1.2 Michael Faraday

Michael Faraday was one of the most influential scientists of the 19th century. He was born in London in 1791 and died in 1867. Faraday's work was instrumental in the development of electromagnetism and the laws of electrolysis. He is best known for his discovery of electromagnetic induction, which is the basis for the operation of transformers and generators. Faraday's laws of electrolysis are still used today in the field of electrochemistry.

4.1.3 Carlisle and William Nicholson

Carlisle and William Nicholson were English chemists who discovered the first practical battery in 1800. They used a copper and zinc container filled with an electrolyte, which was a solution of copper sulphate. The battery was able to produce a current that could be used to light a lamp. This was the first battery that could be used for practical purposes.

4.1.4 Andrew-Heinz Jananz

Andrew-Heinz Jananz was a German scientist who made significant contributions to the field of electrochemistry. He was born in 1821 and died in 1896. Jananz is best known for his work on the electrolysis of water, which he used to produce hydrogen and oxygen gases. His work was instrumental in the development of the chemical industry.

4.1.5 Georg Ohm

Georg Ohm was a German physicist who discovered Ohm's law in 1826. Ohm's law states that the current through a conductor is directly proportional to the voltage applied across its terminals and inversely proportional to its resistance. This law is fundamental to the field of electrical engineering and is used in the design of electrical circuits.

4.1.6 Thomas A.Edison

Thomas A. Edison was an American inventor who is credited with inventing the first practical incandescent light bulb. He was born in Ohio in 1847 and died in New Jersey in 1931. Edison's work in the field of electrical engineering was instrumental in the development of the electrical grid and the widespread use of electricity.

4.1.7 Michael Faraday

Michael Faraday was a British scientist who is credited with developing the first practical electric motor. He was born in London in 1791 and died in 1867. Faraday's work in the field of electromagnetism was instrumental in the development of the electric motor and the electric generator. Faraday's name is immortalized in the unit of magnetic flux density, which is known as the weber.

4.1.8 Wilhelm Roentgen

Wilhelm Roentgen was a German physicist who discovered X-rays in 1895. He was born in 1845 and died in 1923. Roentgen's discovery of X-rays was instrumental in the development of radiography and the field of medical imaging.

Section 4.2: Later Discoveries

4.2.1 Humphry Davy

Humphry Davy was an English chemist who is credited with performing the first electrolysis of water. He was born in 1778 and died in 1829. Davy's work in the field of electrochemistry was instrumental in the development of the chemical industry.

4.2.2 Charles Wheatstone and William Cooke

Charles Wheatstone and William Cooke were British electrical engineers who developed the first practical telegraph system in 1837. They were born in 1802 and 1806, respectively, and died in 1875 and 1879, respectively. Their work in the field of telecommunications was instrumental in the development of the modern telephone system.

4.2.3 Carlisle and William Nicholson

Carlisle and William Nicholson were English chemists who discovered the first practical battery in 1800. They used a copper and zinc container filled with an electrolyte, which was a solution of copper sulphate. The battery was able to produce a current that could be used to light a lamp. This was the first battery that could be used for practical purposes.

4.2.4 Andrew-Heinz Jananz

Andrew-Heinz Jananz was a German scientist who made significant contributions to the field of electrochemistry. He was born in 1821 and died in 1896. Jananz is best known for his work on the electrolysis of water, which he used to produce hydrogen and oxygen gases. His work was instrumental in the development of the chemical industry.

4.2.5 Georg Ohm

Georg Ohm was a German physicist who discovered Ohm's law in 1826. Ohm's law states that the current through a conductor is directly proportional to the voltage applied across its terminals and inversely proportional to its resistance. This law is fundamental to the field of electrical engineering and is used in the design of electrical circuits.

4.2.6 Thomas A.Edison

Thomas A. Edison was an American inventor who is credited with inventing the first practical incandescent light bulb. He was born in Ohio in 1847 and died in New Jersey in 1931. Edison's work in the field of electrical engineering was instrumental in the development of the electrical grid and the widespread use of electricity.

4.2.7 Michael Faraday

Michael Faraday was a British scientist who is credited with developing the first practical electric motor. He was born in London in 1791 and died in 1867. Faraday's work in the field of electromagnetism was instrumental in the development of the electric motor and the electric generator. Faraday's name is immortalized in the unit of magnetic flux density, which is known as the weber.

4.2.8 Wilhelm Roentgen

Wilhelm Roentgen was a German physicist who discovered X-rays in 1895. He was born in 1845 and died in 1923. Roentgen's discovery of X-rays was instrumental in the development of radiography and the field of medical imaging.

Section 4.3: The Achievements of Nicola Tesla

4.3.1 Nikola Tesla

Nikola Tesla was a Serbian-American physicist and engineer who made significant contributions to the field of electrical engineering. He was born in Croatia in 1856 and died in America in 1943. Tesla's work in the field of alternating current was instrumental in the development of the modern electrical grid.

4.3.2 James Clerk Maxwell

James Clerk Maxwell was a Scottish physicist who is credited with formulating the equations that describe the behavior of electromagnetic waves. He was born in 1831 and died in 1879. Maxwell's work was instrumental in the development of the field of electromagnetism and the formulation of the theory of relativity.

4.3.3 Albert Einstein

Albert Einstein was a German-American physicist who is credited with formulating the theory of relativity. He was born in 1879 and died in 1955. Einstein's work was instrumental in the development of the field of quantum mechanics and the development of the atomic bomb.

4.3.4 Werner Heisenberg

Werner Heisenberg was a German physicist who is credited with formulating the uncertainty principle. He was born in 1901 and died in 1976. Heisenberg's work was instrumental in the development of the field of quantum mechanics and the formulation of the theory of relativity.

4.3.5 Richard Feynman

Richard Feynman was an American physicist who is credited with developing the path integral formulation of quantum mechanics. He was born in 1918 and died in 1988. Feynman's work was instrumental in the development of the field of quantum mechanics and the formulation of the theory of relativity.

4.3.6 Maria Goeppert Mayer

Maria Goeppert Mayer was a Polish-American physicist who is credited with formulating the shell model of the nucleus. She was born in Poland in 1906 and died in America in 1972. Goeppert Mayer's work was instrumental in the development of the field of nuclear physics and the formulation of the theory of relativity.

4.3.7 Niels Bohr

Niels Bohr was a Danish physicist who is credited with formulating the quantum theory. He was born in 1885 and died in 1962. Bohr's work was instrumental in the development of the field of quantum mechanics and the formulation of the theory of relativity.